接觸式讀票機(Contact-based)
原理:通過物理接觸(如金屬觸點)檢測選票上的導電標記(如特殊墨水填涂),形成電路導通來識別選擇。
特點:
識別速度快,但對選票材質和標記墨水要求高。
易受污漬、折疊影響,應用場景較窄。
特征提取與判斷:識別選民的選擇意圖
根據選票標記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標記識別(常見場景)
面積占比法:計算填涂框內黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區域的邊緣輪廓,與標準填涂形狀(如矩形、圓形)比對,排除不規則標記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區域,灰度值分布越集中,算法可通過統計像素灰度方差來區分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態學分析:通過膨脹、腐蝕等形態學運算,將勾選符號(√)或手寫標記(如 “○”)轉換為標準形狀,再與預設模板匹配。
方向特征提取:對于斜線標記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標記檢測
多選判定:同一候選區域內檢測到多個標記(如同時填涂兩個候選人框),或單票標記數超過規定(如總統選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區域標記面積均低于閾值,判定為未投票。
4. 結果驗證與輸出:確保計數準確性
重復校驗:對關鍵標記區域進行多次掃描(如兩次獨立圖像采集),結果一致才確認有效。
人工復核接口:對算法判定存疑的選票(如填涂面積接近閾值、標記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數據輸出:將識別結果轉換為結構化數據(如候選人 ID、得票數),同步至中央數據庫或打印紙質統計表。
軟件算法:從識別精度到防篡改機制
1. 多重校驗算法架構
重復掃描比對:對每張選票進行至少 2 次獨立掃描(間隔 50ms),比對兩次圖像的像素差異,若標記區域灰度值偏差超過 15%,則觸發第三次掃描并人工介入(如日本選舉法要求對爭議票進行三次掃描)。
多特征融合判斷:結合填涂面積、邊緣輪廓、灰度梯度等多維度特征,采用加權投票機制(如面積占比權重 40%+ 邊緣匹配度權重 30%+ 濃度均勻性權重 30%),避免單一特征誤判(例:某區域面積達標但邊緣鋸齒狀,可能被判為 “無意涂抹”)。
機器學習模型迭代:利用歷史選舉的有效 / 無效票數據(如美國 EAC 公開的選票數據集)訓練 CNN 模型,對非標準標記(如超框填涂、輕描標記)的識別準確率提升至 99.2% 以上。
2. 防篡改與數據完整性保護
哈希值校驗:對每張選票的掃描圖像生成哈希值(如 SHA-256),存儲于區塊鏈節點或加密數據庫,任何圖像修改都會導致哈希值變更,可實時檢測數據篡改(如德國部分州采用區塊鏈存證選票圖像)。
軟件版本控制:讀票機操作系統與識別算法采用簽名固件更新機制,僅允許通過官方渠道推送的版本(附帶數字證書)安裝,防止惡意程序植入(如 2018 年美國佛羅里達州選舉前,對所有讀票機進行固件哈希值比對,攔截 3 臺異常設備)。
爭議票處理機制
可視化復核界面:讀票機軟件提供選票圖像放大、灰度值可視化工具(如用熱力圖顯示填涂濃度),工作人員可手動標記 “有效”“無效” 或 “待確認”(如加拿大聯邦選舉中,人工復核團隊通過專用軟件處理爭議票)。
多輪仲裁流程:對人工復核仍存爭議的選票(如填涂面積剛好卡在閾值邊緣),由選區選舉委員會 3 名成員投票決定,需至少 2 票同意方可判定有效性。

